

Tetrahedron Letters 41 (2000) 831-834

TETRAHEDRON LETTERS

Synthesis of the dichlorobisoxazole-indole portion of the antitumor agent diazonamide by a putative biogenetic strategy

Philip Magnus * and Edward G. McIver

Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, USA

Received 19 October 1999; revised 19 November 1999; accepted 22 November 1999

Abstract

Chlorination of the bis-oxazole-indole 16 using *N*-chlorosuccinimide gave the dichloride 13 (86%) and the trichloride 12 (5%) thus completing the synthesis of the CDEF rings of diazonamide. © 2000 Elsevier Science Ltd. All rights reserved.

In 1991 Fenical and Clardy reported the structure of diazonamide A, **1** and diazonamide B, **2**, Scheme 1.¹ The diazonamides were isolated from the colonial ascidian *Diazona chinensis*, collected from the ceilings of caves along the northwest coast of Siquijor Island in the Philippines. It was reported that **1** has potent in vitro activity against HCT-116 human colon carcinoma and B-16 murine melanoma cancer cells (IC₅₀<15 ng/mL). The structures of **1** and **2** were inferred from the X-ray structure of the derivative **3**. The diazonamides have generated some synthetic interest,² and the synthesis of oxazoles and bisoxazoles has undergone renewed interest.^{3–5} There is a growing number of oxazole natural products with interesting biological properties, but the diazonamides are manifestly unique in their structural features.⁶

The footnoted report by Wipf and Yokokawa that chlorination of a CDE-ring model compound with *N*-chlorosuccinimide (NCS)/dibenzoylperoxide/CCl₄/70°C resulted in the direct introduction of the required chlorine atoms into the 2- and 4-positions of the indole and oxazole, respectively, prompted this letter.⁷ We speculate that the tryptophan derived bisoxazole **4** can undergo chlorodecarboxylation via **5** to give **6**, and this forms the basis of the subsequent experiments.

The known⁸ valine-derived oxazole **7** was treated with Et₃N and isobutyl chloroformate in THF at 0 to 25°C, followed by methyl tryptophan·HCl to give **8** in 95% yield (Scheme 2). Dehydrogenation of **8** using 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)⁹ in dry THF gave the bis-oxazole **9** (64%). It should be noted that this dehydrogenation reaction does not work well (if at all) on the corresponding tryptamine derived substrates. While oxazoles are normally quite resistant to electrophilic substitution reactions,¹⁰ the presence of the indole was expected to increase the reactivity of the oxazole. It was found that treatment of **10** with *N*-chlorosuccinimide (NCS) (2.0 equiv.)/CCl₄ at 40°C for 48 h gave

^{*} Corresponding author.

^{0040-4039/00/\$ -} see front matter © 2000 Elsevier Science Ltd. All rights reserved. P11: S0040-4039(99)02203-0

Scheme 1.

11 (73%). Attempted hydrolysis of the methyl ester 11 (LiOH/THF/H₂O, KOSiMe₃/THF) with the reasonable expectation that decarboxylation would ensue and result in the direct formation of 13 was not successful. Only numerous intractable decomposition products were formed. As a consequence it was decided to hydrolyze the ester 9 to the acid 10 prior to chlorination. Treatment of 9 with a variety of hydroxide bases (LiOH/THF/H₂O) resulted in extensive decomposition and only very low yields of the acid 10 were isolated. Treatment of 9 with KOSiMe₃/THF/20 h gave after work-up 10 (crude) which was immediately chlorinated as before [(NCS) (2.0 equiv.)/CCl₄ at 40°C for 48 h] to give the trichloro-adduct 12 in poor yield. The structure of 12 was partially confirmed by treatment with Zn/AcOH to give the desired dichlorobisoxazole-indole portion of diazonamide, namely 13 in excellent yield.¹¹ Clearly, the low yield in the chlorodecarboxylation step (10 \rightarrow 12) does not make this a practical route to 13, and therefore we examined the same type of sequence of reactions as depicted in Scheme 2 except that the decarboxylation is avoided by using tryptamine instead of tryptophan (Scheme 3).

Coupling 7 to tryptamine using the chloroformate procedure gave 14 (99%) (Scheme 3). The direct DDQ oxidation of 14 to give 17 does not work (alluded to before), and therefore a two-step sequence was used. Treatment of 14 with DDQ in aqueous THF gave the ketone 15 (80%). Dehydration of 15 to give 17 proved to be difficult (Burgess reagent gave 35% yield of 17) but using the Wipf⁷ procedure gave 17 in 43% yield.¹² In one instance we obtained a 73% yield of 17, although this was not reproducible. Chlorination of 17 proceeded cleanly to give a mixture of 12 and 13 in 5% and 86% yield, respectively. The trichloro-adduct 12 was converted into 13 by treatment with Zn/AcOH.¹³ In an effort to improve the yield of the keto-amide dehydration to form the oxazole ($15 \rightarrow 17$) we protected the indole 15 as the carbamate 16. Treatment of 16 with ($Cl_3C)_2/PPh_3/Et_3N$ gave 18 (69%), which on deprotection gave 17 (89%). The dehydration step was considerably improved and more reproducible; the overall yield from 15 to 17 via 16 and 18 was significantly improved to 51% (over three steps) to make the protection/deprotection steps worthwhile.

Finally, treatment of the Boc-protected amine 13 with trifluoroacetic acid (TFA)/ CH_2Cl_2 cleanly removed the Boc group to give 6 (Scheme 1) in almost quantitative yield. This relatively short route for

Scheme 3.

the synthesis of the CDEF rings of diazonamide is currently being examined for substrates that contain the G ring where the possibility of atropisomerism could manifest itself.

Acknowledgements

The National Institutes of Health, Robert A. Welch Foundation, Merck Research Laboratories and Novartis are thanked for their support of this research.

References

- 1. Lindquist, N.; Fenical, W.; Van Duyne, G. D.; Clardy, J. J. Am. Chem. Soc. 1991, 113, 2303-2304.
- Moody, C.; Doyle, K.; Elliott, M.; Mowlem, T. Pure Appl. Chem. 1994, 66, 2107–2010. Moody, C.; Doyle, K.; Elliott, M.; Mowlen, T. J. Chem. Soc., Perkin Trans. 1 1997, 2413–2419. Konopelski, J.; Hottenroth, J.; Oltra, H.; Veliz, E.; Yang, Z.-C.

Synlett **1996**, 609–611. Hang, H. C.; Drotleff, E.; Elliott, G. I.; Ritsema, T. A.; Konopelski, J. P. *Synthesis* **1999**, 398–400. Boto, A.; Ling, M.; Meek, G.; Pattenden, G. *Tetrahedron Lett.* **1998**, *39*, 8167–8170. Jeong, S.; Chen, X.; Harran, P. G. J. Org. Chem. **1998**, *63*, 8640–8641.

- Molina, P.; Fresneda, P. A.; Almendros, P. Synthesis 1993, 54–56. Ang, K.; Prager, R.; Smith, J.; Weber, B.; Williams, C. Tetrahedron Lett. 1996, 37, 675–678. Barrett, A. G. M.; Kohrt, J. Synlett 1995, 415–416. Bagley, M.; Buck, R.; Hind, S. L.; Moody, C.; Slawin, A. Synlett 1996, 825–826.
- Doyle, K.; Moody, C. Tetrahedron Lett. 1992, 33, 7769–7770. Doyle, K.; Moody, C. Tetrahedron 1994, 50, 3761–3772.
 Wipf, P.; Miller, C. J. Org. Chem. 1993, 58, 3604–3606. Yoo, S.-K. Tetrahedron Lett. 1992, 33, 2159–2162.
- 5. Wipf, P.; Venkatraman, S. Synlett 1997, 1-10.
- 6. Michael, J.; Pattenden, G. Angew. Chem., Int. Ed. Engl. 1993, 32, 1-130.
- 7. Wipf, P.; Yokokawa, F. Tetrahedron Lett. 1998, 39, 2223–2226.
- 8. Downing, S. V.; Aguilar, E.; Meyers, A. I. J. Org. Chem. 1999, 64, 826-831.
- 9. Oikawa, Y.; Yoshioka, T.; Mohri, K.; Yonemitsu, O. *Heterocycles* 1979, *12*, 1457–1462. Oikawa, Y.; Yonimitsu, O. J. Org. Chem. 1977, *42*, 1213–1216.
- 10. Turchi, I. J. Oxazoles; John Wiley & Sons: New York, 1986.
- 11. The isomeric structure 12a is also a possibility, and would be readily reduced by Zn/AcOH to give 13.

- 12. Spectral data for **17**: ¹H NMR (300 MHz, CDCl₃) δ 0.95 (3H, d, *J*=6.0 Hz), 0.97 (3H, d, *J*=6.0 Hz), 1.45 (9H, s), 2.25 (1H, m), 4.86 (1H, dd, *J*=9.0, 6.0 Hz), 5.40 (1H, bd, *J*=9.0 Hz), 7.23–7.32 (2H, m), 7.37 (1H, s), 7.46 (1H, dd, *J*=6.0, 3.0 Hz), 7.63 (1H, d, *J*=3.0 Hz), 7.64 (1H, dd, *J*=6.0, 3.0 Hz), 8.18 (1H, s), 8.83 (1H, b s). ¹³C NMR (126 MHz, CDCl₃) δ 18.0, 18.7, 28.3, 33.0, 54.4, 80.0, 105.2, 111.7, 119.8, 121.0, 121.1, 122.5, 123.1, 124.0, 130.6, 136.3, 137.6, 148.0, 152.8, 155.5, 165.2. HRMS (CI) calcd for C₂₃H₂₆N₄O₄ (M⁺): 422.1954. Found: 422.1958.
- Spectral data for 13: ¹H NMR (300 MHz, CDCl₃) δ 0.94 (3H, d, *J*=6.0 Hz), 0.96 (3H, d, *J*=6.0 Hz), 1.45 (9H, s), 2.25 (1H, m), 4.86 (1H, dd, *J*=6.0, 9.0 Hz), 5.39 (1H, bd, *J*=9.0 Hz), 7.18 (1H, t, *J*=6.0 Hz), 7.24 (1H, t, *J*=6.0 Hz), 7.35 (1H, d, *J*=6.0 Hz), 7.59 (1H, d, *J*=6.0 Hz), 8.18 (1H, s), 9.22 (1H, b s). ¹³C NMR (126 MHz, CDCl₃) δ 17.9, 18.6, 28.2, 32.9, 54.3, 80.1, 99.4, 110.8, 119.3, 121.4, 123.2, 124.2, 126.1, 128.0, 130.0, 134.3, 138.5, 139.4, 153.8, 155.5, 165.5. HRMS (CI) calcd for C₂₃H₂₄N₄O₄Cl₂ (M⁺): 490.1175. Found: 490.1164.